Automated Detection of Vascular Leakage in Fluorescein Angiography – A Proof of Concept


Creative Commons License

Young L. H., Kim J., Yakin M., Lin H., Dao D. T., Kodati S., ...Daha Fazla

Translational Vision Science and Technology, cilt.11, sa.7, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 11 Sayı: 7
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1167/tvst.11.7.19
  • Dergi Adı: Translational Vision Science and Technology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: fluorescein angiography, machine learning, uveitis
  • Lokman Hekim Üniversitesi Adresli: Hayır

Özet

Purpose: The purpose of this paper was to develop a deep learning algorithm to detect retinal vascular leakage (leakage) in fluorescein angiography (FA) of patients with uveitis and use the trained algorithm to determine clinically notable leakage changes. Methods: An algorithm was trained and tested to detect leakage on a set of 200 FA images (61 patients) and evaluated on a separate 50-image test set (21 patients). The ground truth was leakage segmentation by two clinicians. The Dice Similarity Coefficient (DSC) was used to measure concordance. Results: During training, the algorithm achieved a best average DSC of 0.572 (95% confidence interval [CI] = 0.548–0.596). The trained algorithm achieved a DSC of 0.563 (95% CI = 0.543–0.582) when tested on an additional set of 50 images. The trained algorithm was then used to detect leakage on pairs of FA images from longitudinal patient visits. Longitudinal leakage follow-up showed a >2.21% change in the visible retina area covered by leakage (as detected by the algorithm) had a sensitivity and speci-ficity of 90% (area under the curve [AUC] = 0.95) of detecting a clinically notable change compared to the gold standard, an expert clinician’s assessment. Conclusions: This deep learning algorithm showed modest concordance in identifying vascular leakage compared to ground truth but was able to aid in identifying vascular FA leakage changes over time. Translational Relevance: This is a proof-of-concept study that vascular leakage can be detected in a more standardized way and that tools can be developed to help clinicians more objectively compare vascular leakage between FAs.