Molecular and Cellular Biochemistry, vol.409, no.1-2, pp.23-31, 2015 (SCI-Expanded)
© 2015, Springer Science+Business Media New York.Trace elements can participate in the catalysis of group-transfer reactions and can serve as their structural components. However, most of them including zinc and selenium have multifunctional roles in biological environments such as antioxidant and/or pro-oxidant effects, as concentration-dependent manner. Although it has been demonstrated the antioxidant actions of either selenium or zinc compounds, there are several documents pointing out their pro-oxidant/oxidant roles in biological systems. Here we have used ELISA-based immuno-spin trapping, a method for detection of free radical formation, to detect whether or not a zinc compound, Zn3(PO4)2, or a selenium compound, Na2SeO3, has antioxidant and/or pro-oxidant effect on 5,5-Dimethyl-1-Pyrroline-N-Oxide (DMPO)-DNA nitrone adducts induced with Cu(II)-H2O2-oxidizing system in in vitro preparations. Second, we examined whether this technique is capable to demonstrate the different DMPO-protein nitrone adduct productions in isolated protein crude of hearts from normal rats (CON) or rats with metabolic syndrome (MetS). Our data demonstrated that either Zn2+ (100 µM) or SeO3-2 (50 nM) has very strong antioxidant action against 200 µM H2O2-induced DMPO-DNA nitrone adduct production, whereas their higher concentrations have apparent pro-oxidant actions. We also used verification by Western blotting analysis whether immuno-spin trapping can be used to assess H2O2-induced DMPO-protein nitrone adducts in heart protein crudes. Our Western blot data further confirmed the ELISA-data from proteins and demonstrated how Zn2+ or SeO3-2 are dual-functioning ions such as antioxidant at lower concentrations while pro-oxidant at higher concentrations. Particularly, our present data with SeO3-2 in DMPO-protein nitrone adducts, being in line with our previous observation on its dual-actions in ischemia/reperfusion-induced damaged heart, have shown that this ion has higher pro-oxidant actions over 50 nM in MetS-group compared to that of CON group.