Journal of Neurosurgery, cilt.122, sa.6, ss.1347-1355, 2015 (SCI-Expanded)
© AANS, 2015.OBJECT: The goal of this study was to determine the value of the 3D sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) technique in the evaluation of endoscopic third ventriculostomy (ETV) patency. METHODS: Twenty-six patients with ETV were examined using 3-T MRI units. Sagittal-plane 3D-SPACE with variant flip-angle mode, 3D T1-weighted (T1W), and 3D heavily T2-weighted (T2W) images were obtained with isotropic voxel sizes. Also, sagittal-axial plane phase-contrast cine (PC)-MR images were obtained. The following findings were evaluated: diameters of stoma and third ventricle, flow-void sign on 3D-SPACE and PC-MR images, integrity of the third ventricle on heavily T2W images, and quantitative PC-MRI parameters of the stoma. Obtained sequences were evaluated singly, in combination with one another, and all together. RESULTS: The mean area, flow, and velocity values measured at the level of stoma in patients with patent stoma were significantly higher than those measured in patients with closed stoma (p < 0.05). There was significant correlation among PC-MRI, 3D-SPACE, and 3D heavily T2W techniques regarding assessment of ETV patency (p < 0.001). The 3D-SPACE technique provided the lowest rate of ambiguous results. CONCLUSIONS: The 3D-SPACE technique seems to be the most efficient one for determination of ETV patency. The authors suggest the use of 3D-SPACE as a stand-alone first-line sequence in addition to routine brain MRI protocols in assessing patients with ETV, thereby decreasing scan time and reserving the use of a combination of additional sequences such as PC-MRI and 3D heavily T2W images in suspicious or complex cases.