CHEMISTRYSELECT, cilt.7, sa.12, 2022 (SCI-Expanded)
Amid the current COVID-19 pandemic, the emergence of several variants in a relatively high mutation rate (twice per month) strengthened the importance of finding out a chemical entity that can be potential for developing an effective medicine. In this study, we explored ethyl acetate (EtOAc) extract of a marine-derived fungus Aspergillus cosatricaensis afforded three butenolide derivatives, butyrolactones I, VI and V (1-3), two naphtho-gamma-pyrones, TMC-256 A1 (4) and rubrofusarin B (5) and methyl p-hydroxyphenyl acetate (6). Structure identification was unambiguously determined based on exhaustive spectral analyses including 1D/2D NMR and mass spectrometry. The isolated compounds (1-6) were assessed for their in vitro anti-inflammatory, antiallergic, elastase inhibitory activities and in silico SARS-CoV-2 main protease (M-pro). Results exhibited that only butenolides (1 and 2) revealed potent activities similar to or more than reference drugs unlike butyrolactone V (3) suggesting them as plausible chemical entities for developing lead molecules.