Chemosensitizer Loaded NIR-Responsive Nanostructured Lipid Carriers: A Tool for Drug-Resistant Breast Cancer Synergistic Therapy


Okuyucu C. E., KALAYCIOĞLU G. D., Ozden A. K., AYDOĞAN N.

ACS Applied Bio Materials, 2025 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1021/acsabm.4c01675
  • Dergi Adı: ACS Applied Bio Materials
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, BIOSIS, Compendex, EMBASE, MEDLINE
  • Anahtar Kelimeler: breast cancer, doxorubicin, multidrug resistance, nanostructured lipid carriers, NIR-triggered release, photothermal therapy, verapamil
  • Lokman Hekim Üniversitesi Adresli: Evet

Özet

Although numerous technical advances have been made in cancer treatment, chemotherapy is still a viable treatment option. However, it is more effective when used in combination with photothermal therapy for resistant breast cancer cells. This study introduces a smart drug delivery system, (DOX-OA+VERA+AuNRs)@NLC, which is designed for dual chemo/photothermal therapy of multiple-drug-resistant breast cancer. Type-III nanostructured lipid carriers (NLCs) were used as drug delivery systems, where nano-in-nano structures offer several advantages. Doxorubicin (DOX) was used as the antitumor agent by ion-pairing it with oleic acid (OA) to increase the DOX loading capacity, as well as to reduce the burst release of the drug. Verapamil (VERA), which was used as a chemosensitizer to overcome the multiple-drug resistance, was co-loaded with DOX-OA. Gold nanorods (AuNRs) were exploited as the photothermal therapy agent in photothermal therapy (PTT) application, which would have a synergistic relation with chemotherapy. The release of DOX-OA and VERA from NLCs was studied in vitro by triggering with NIR laser irradiation. Thus, an all-in-one drug delivery system was designed to release the active pharmaceutical ingredients (APIs) at higher concentrations in the desired region and provide both chemo/PTT. Besides, the application of a folic acid-chitosan (FA-CS) coating to NLCs has facilitated the development of systems capable of targeting and specifically releasing their cargo within cancerous tissues while preserving their surrounding environment.