Molecular and Cellular Biochemistry, cilt.390, sa.1-2, ss.41-49, 2014 (SCI-Expanded)
High glucose and increased oxidative stress levels are the known important mediators of diabetic nephropathy. However, the effects of these mediators on tissue damage basically due to extracellular matrix expansion in mesangial cells have yet to be fully examined within the context of early stage diabetic nephropathy. In this study, we attempted to characterize changes in mesangial cells of streptozotocin-induced diabetic rats with a comparative investigation of kidney tissue by using different microscopy techniques. The serum levels of urea and creatinine of diabetic rats, as biomarkers of kidney degeneration, decreased significantly compared to those of age-matched controls. In diabetic rats, there are increased malondialdehyde and oxidized-glutathione levels as well as reduced-glutathione and glutathione-peroxidase activity levels in renal tissue compared to those of the controls. By using light and electron microscopies, we showed that there were marked thickening in Bowman's membrane and glomerular capillary wall, increased amount of extracellular matrix often occupying Bowman's space, degenerations in tubules, an increased number of mesangial cells in the network of glomerular capillary walls, and increased amount of lipid accumulation in proximal tubules in the renal tissue of diabetic rats. Our confocal microscopy data confirmed also the presence of irregularity and widened in glomerular capillaries, their attachment to the Bowman's capsule, degenerated heterochromatin, thickening in foci of glomerular basement membrane, and marked increase in mesangial cells. These results suggest that a detailed structural investigation of kidney tissue provides further information on the important role of mesangial cells in pathogenesis of diabetic nephropathy. © 2013 Springer Science+Business Media New York.