Academic Radiology, cilt.29, 2022 (SCI-Expanded)
© 2021 The Association of University RadiologistsRationale and Objectives: We aimed to evaluate the diagnostic performance of diffusion-weighted imaging (DWI) and dynamic susceptibility contrast-enhanced (DSC) magnetic resonance imaging (MRI) parameters in the noninvasive prediction of the isocitrate dehydrogenase (IDH) mutation status in high-grade gliomas (HGGs). Materials and Methods: A total of 58 patients with histopathologically proved HGGs were included in this retrospective study. All patients underwent multiparametric MRI on 3-T, including DSC-MRI and DWI before surgery. The mean apparent diffusion coefficient (ADC), relative maximum cerebral blood volume (rCBV), and percentage signal recovery (PSR) of the tumor core were measured and compared depending on the IDH mutation status and tumor grade. The Mann-Whitney U test was used to detect statistically significant differences in parameters between IDH-mutant–type (IDH-m–type) and IDH-wild–type (IDH-w–type) HGGs. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic performance. Results: The rCBV was significantly higher, and the PSR value was significantly lower in IDH-w–type tumors than in the IDH-m group (p = 0.002 and <0.001, respectively).The ADC value in IDH-w–type tumors was significantly lower compared with the one in IDH-m types (p = 0.023), but remarkable overlaps were found between the groups. The PSR showed the best diagnostic performance with an AUC of 0.938 and with an accuracy rate of 0.87 at the optimal cutoff value of 86.85. The combination of the PSR and the rCBV for the identification of the IDH mutation status increased the discrimination ability at the AUC level of 0.955. In terms of each tumor grade, the PSR and rCBV showed significant differences between the IDH-m and IDH-w groups (p ≤0.001). Conclusion: The rCBV and PSR from DSC-MRI may be feasible noninvasive imaging parameters for predicting the IDH mutation status in HGGs. The standardization of the imaging protocol is indispensable to the utility of DSC perfusion MRI in wider clinical usage.