Lavandula pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl and Origanum compactum Benth


Creative Commons License

Boutahiri S., Eto B., Bouhrim M., Mechchate H., Saleh A., Al Kamaly O., ...Daha Fazla

Life, cilt.12, sa.3, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/life12030328
  • Dergi Adı: Life
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: Lavandula pedunculata (Mill, ) Cav, Salviarosmarinus Spenn, Salvia lavandulifolia Vahl, Origanum compactum Benth, polyphenols, antibacterial activity, ANTIMICROBIAL ACTIVITY, MOLECULAR-MECHANISMS, ESSENTIAL OILS, ANTIOXIDANT, L., INFECTIONS, RESISTANT, TRENDS, ATLAS
  • Lokman Hekim Üniversitesi Adresli: Evet

Özet

© 2022 by the authors. Licensee MDPI, Basel, Switzerland.Lavender aqueous extracts are widely used in the Moroccan traditional medicine for their antibacterial properties. However, previous research have generally focused on investigating the antibacterial activity of lavender essential oils. The aim of this study is to evaluate the antibacterial activity of the Moroccan Lavandula pedunculata (Mill.) Cav. aqueous extract, alone, as well as in combination with extracts of other plant species known for their antibacterial activity: Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl. and Origanum compactum Benth. We have tested the antibacterial activity of L. pedunculata, S. rosmarinus, S. lavandulifolia and O. compactum aqueous extracts individually and in combination against 34 strains using the agar dilution method. The combination effect was evaluated using the fractional inhibitory concentration (FIC). Polyphenol and tannin contents were determined using Folin-Ciocalteu reagent, and then some phenolic compounds were identified using UHPLC-MS. All the extracts displayed a large spectrum of antibacterial activity, especially against staphylococci, streptococci, Mycobacterium smegmatis and Proteus mirabilis. The minimum inhibitory concentration (MIC) values reached 0.15 ± 0.00 mg/mL for Staphylococcus warneri tested with S. lavandulifolia and 0.20 ± 0.07 mg/mL for Staphylococcus epidermidis tested with L. pedunculata or S. rosmarinus. Association of the L. pedunculata extract with S. rosmarinus, S. lavandulifolia and O. compactum showed synergistic effects (FIC ≤ 1). Moreover, the association of L. pedunculata with S. lavandulifolia was active against most of the Gram-negative strains resistant to the individual extracts. Determination of polyphenol and tannin contents showed the richness of the studied plants in these compounds. Additionally, chromatographic analysis demonstrated the high presence of rosmarinic acid in all the studied plant extracts. To our knowledge, this is the first study that shows the enhancing effect of the antibacterial activity of L. pedunculata aqueous extract combined with S. rosmarinus, S. lavandulifolia and O. compactum. These results confirm the effectiveness of the plant mixtures commonly used by traditional healers in Morocco and suggest that L. pedunculata might be used as an antibacterial agent either alone or, more efficiently, in combination with S. rosmarinus, S. lavandulifolia and O. compactum.