Influence of formulation parameters on the characteristics of poly(D,L-lactide-co-glycolide) microspheres containing poly(L-lysine) complexed plasmid DNA


Capan Y., Woo B., Gebrekidan S., Ahmed S., DeLuca P.

JOURNAL OF CONTROLLED RELEASE, cilt.60, sa.2-3, ss.279-286, 1999 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 60 Sayı: 2-3
  • Basım Tarihi: 1999
  • Doi Numarası: 10.1016/s0168-3659(99)00076-0
  • Dergi Adı: JOURNAL OF CONTROLLED RELEASE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.279-286
  • Anahtar Kelimeler: microsphere, plasmid DNA, poly(D,L-lactide-co-glycolide), poly(L-lysine), DNase, SOLVENT EVAPORATION, DELIVERY, MICROPARTICLES, SYSTEM, MICE
  • Lokman Hekim Üniversitesi Adresli: Hayır

Özet

This study describes the influence of polymer type, surfactant type/concentration, and target drug loading on the particle size, plasmid DNA (pDNA) structure, drug loading efficiency, in vitro release, and protection from DNase I degradation of poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing poly(L-lysine) (PLL) complexed pDNA. PLGA microspheres containing pDNA-PLL were prepared using the water-in-oil-in-water (w-o-w) technique with poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) as surfactants in the external aqueous phase. A complex ratio of 1:0.33 (pDNA-PLL, w/w) enhanced the stability of pDNA during microsphere preparation. Higher pDNA-PLL loading efficiency (46.2%) and supercoiled structure (64.9%) of pDNA were obtained from hydrophobic PLGA (M-w, 31 000) microspheres compared with hydrophilic PLGA or low-molecular-weight PLGA microspheres. The particle size decreased from 6.6 to 2.2 mu m when the concentration of PVA was increased from 1 to 7%. At the same concentration of surfactant, PVA stabilized microspheres showed higher pDNA-PLL loading efficiency (46.2%) than PVP stabilized microspheres (24.1%). Encapsulated pDNA in PLGA microspheres was protected from enzymatic degradation and maintained in the supercoiled form. The pDNA-PLL microspheres showed in vitro release of 95.9 and 84.9% within 38 days from the low-molecular-weight PLGA and hydrophilic PLGA microspheres, respectively, compared to 54.2% release from the hydrophobic, higher-molecular-weight PLGA microspheres. The results suggest loading and release of pDNA,-PLL complex can be influenced by surfactant concentration and polymer type. (C) 1999 Elsevier Science B.V. All rights reserved.